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Abstract. Our goal in these notes is to discuss some of the applications of the first inequality of class field
theory.

1. Background

We begin by providing the necessary background on group cohomology. For reference with proofs, see
chapter 4 of [?].

1.1. Cohomology.

Definition 1.1. Given an arbitrary group G and an arbitrary, abelian G-module A, we define the zeroth
cohomology group by:

H0(G,A) = AG = {a ∈ A | ga = a for all g ∈ G}

Definition 1.2. A cocycle is a map f : G → A such that f(g1g2) = f(g1) · g1f(g2) for all g1, g2 ∈ G.
Together the cocycles form a group under pointwise multiplication.
A coboundary is a map f : G→ A such that f(g) = ga/a for some a ∈ A and all g ∈ G. These clearly form
a subgroup of cocycles. So we define:

H1(G,A) = cocycles/coboundaries

Note that when G is cyclic, we have that H1(G,A) = ker(Norm)/Im( g·
· : A→ A).

We can use cohomology to turn short exact sequences, such as the following:

1→ A→ B → C → 1

into a long exact sequence:

1→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ H1(G,C)→ · · ·
For now we only need the following statement about the H2(G,A).

Theorem 1.3. If G is cyclic and A a G-module, H2(G,A) ∼= AG/Norm(A).

Definition 1.4. The Tate cohomology groups are defined to be

Ĥr(G,A) =

{
AG/Norm(A) if r = 0

Hr r > 0

Note that this directly implies that H2(G,A) ∼= Ĥ0(G,A), when G is cyclic.

Definition 1.5. The Herbrand quotient is h2/1(G,A) = |H2(G,A)|/|H1(G,A)|, when the terms on the
right are defined.

Lemma 1.6 (Shapiro’s Lemma). Let G′ be a subgroup of G. If A′ is a G′-module, we can form the G-module
A = HomG′(Λ, A′), where Λ = Z[G], the integral group ring of G. Then, for q ≥ 0, we have:

Hq(G,A) = Hq(G′, A′)

Proposition 1.7. Let 0→ A→ B → C → 0 be an exact sequence of G modules, where G is a cyclic group.
Then, if at least two of h2/1(G,A), h2/1(G,B), h2/1(G,C) are defined, the third herbrand quotient is defined
and h2/1(G,B) = h2/1(G,A) · h2/1(G,C).
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Proposition 1.8. Let A,B be G-modules, and f : A → B a G-homomorphism with finite kernel and
cokernel. Then, if either h2/1(A) or h2/1(B) are defined, then the other is defined and h2/1(A) = h2/1(B).

Proposition 1.9. Let E be a finite-dimensional R-representation of G, and let L,M be two lattices of E
which span E and are invariant under G. Then, if either h2/1(L) or h2/1(M) are defined, then the other is
defined and h2/1(L) = h2/1(M).

1.2. Ideles and Norms.

Definitions 1.10. Let L/K/Q be abelian extensions.
We will use NL/K to denote the norm map for L/K.
Kp denotes the completion of K at some p a prime of K. Furthermore, Up are the units of the ring of integers
of Kp.
The ideles denoted as A×K are equal to

∏′
K×p × (K⊗R)× where

∏′ is a restricted product, meaning
∏′

K×p
is the subset of

∏
K×p consisting of elements (ap) where all but finitely many ap lie in an open compact

subgroup of K×p , specifically Up.
The idele class group denoted as CK are equal to K×\A×K .
The ideal class group denoted as ClK is IK/PrinK , where IK is the set of fractional ideals in K and PrinK
is the set of principal ideals in K. A subgroup M of K× is called a norm subgroup if there exists a finite
abelian extension L/K with M = NL/KL

×.

From these definitions, the following proposition follows, though it will not be proven. For proofs and
more background, see chapter 6 of [?].

Proposition 1.11. For any number field K, the following sequence is exact.

1 O×K�
(

(R⊗K)× × Ô×K
)

CK ClK 1

Proposition 1.12. For some abelian extension L/K and finite set of primes S, we can define

A×L,S =
∏
v∈S

(
∏
w|v

L×w)×
∏
v/∈S

(
∏
w|v

Uw)

Then, we have h2/1(G,A×L,S) =
∏

v∈S nv, where nv are the degrees of the local extension, [Lv : Kv].

Theorem 1.13. A subgroup M of K× is a norm subgroup if and only if it satisfies the following two
conditions:

(1) Its index [K× : M ] is finite.
(2) M is open in K×.

Theorem 1.14 (Weak Approximation). K is dense in a finite product of Kp.

Corollary 1.15. For S a finite set of primes, K surjects onto
∏

S Kp/Up, where Up is some open subset of
Kp.

Proof. Because K is dense, the image of K intersects every open set. In particular, x ·
∏

S(Up) is an open
set for any x in

∏
S Kp, so there is an element, α ∈ K that maps into x ·

∏
S(Up). Therefore, α 7→ x in the

quotient. �

2. The First Inequality

Theorem 2.1. Let L/K be a cyclic extension of degree n. Then, h2/1(G,CL) = n.

There is a proof of this on page 178 of [?]. Here, we restate and clarify this proof in the terminology used
in this paper.

Proof. First, take a finite set S of primes large enough such that A×L = L× × A×L,S . To be precise, S should
contain the archimedean primes of K, the primes of K ramified in L, and primes of K that lie below primes
whose classes generate ClL. Also, let T be the set of primes in L that lie above the primes in S. Because
A×L,S → CL is surjective by definition, we can write:

CL = A×L/L
× ' A×L,S/(L

× ∩ A×L,S)
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Furthermore, we can denote LT = L× ∩ A×L,S because it is easy to see that this is the set of T−units of L
i.e. L× ∩

∏
w∈T (L×w)×

∏
w/∈T (Uw). So, as CL = A×L,S/LT , we can see that:

h2/1(G,CL) = h2/1(G,A×L,S)/h2/1(G,LT ) by Proposition ??

First, we calculate h2/1(G,A×L,S) = h2/1(
∏

v∈S(
∏

w|v L
×
w)) · h2/1(

∏
v/∈S(

∏
w|v Uw)). Because S contains all

ramified primes, we know from page 177 of [?] that
∏

v/∈S(
∏

w|v Uw) has trivial cohomology, implying that
h2/1(

∏
v/∈S(

∏
w|v Uw)) = 1. So, we have:

h2/1(G,A×L,S) = h2/1(
∏
v∈S

(
∏
w|v

L×w)) = (
∏
v∈S

h2/1(
∏
w|v

L×w))

By Proposition ??, we see that h2,1(G,A×L,S) =
∏

v∈S nv, where nv are the degrees of the local extensions.
Now, we examine h2/1(LT ). We hope to show that h2/1(LT ) = n

∏
v∈S nv, as that will complete the proof.

To do this, we construct two different lattices that span the same vector space, implying that they have the
same Herbrand quotient, by Proposition ??.
Let V be the real vector space of maps f : T → R, so we have that V ' Rt, where t = [T ], the cardinality
of T . We define the action of G on V such that (σf)(w) = f(σ−1w) =⇒ (σf)(σw) = f(w) for all f ∈ V ,
σ ∈ G, and w ∈ T . Now, we construct N = {f ∈ V |f(w) ∈ Z for all w ∈ T}. N spans V because we can
multiply by any real number, and N is G-invariant because σ−1w is still an element of T and f ∈ N maps
any element of T to an integer. So, we have that N '

∏
v∈S(

∏
w|v Zw) where Zw ' Z for all w, and the

action of G on N is to permute the Zw for all w over a give v ∈ S. By applying Shapiro’s lemma, again we
get:

Ĥr(G,N) '
∏
v∈S

Ĥr(G,
∏
w|v

Zw) '
∏
v∈S

Ĥr(Gv,Z)

Here, Gv is the decomposition group of v. So, we calculate:

h(N) =
∏
v∈S

(|Ĥ0(Gv,Z)|/|H1(Gv,Z)|) =
∏
v∈S

(|ZGv

/N(Z)|/1) =
∏
v∈S

nv by Hilbert’s Theorem 90

Next, we define another lattice. Let λ : LT → V such that λ(a) 7→ fa, where fa(w) = log |a|w for all w ∈ T .
Dirichlet’s Unit Theorem tells us that the kernel of this λ is finite and its image is a latticeM0 of V spanning
the subspace V 0 = {f ∈ V |

∑
f(w) = 0}. From Proposition ??, we have h(LT ) = h(M0) because the kernel

of λ is finite. But, we can now write V = V 0 + Rg where g(w) = 1 for all w ∈ T . We can construct
M = M0 + Zg to see that M spans V and both M0 and Zg are invariant under G. Therefore, we get that
h2/1(M) = h2/1(M0) · h2/1(Zg) = nh2/1(M0) = nh2/1(LT ). Furthermore, as M and N are lattices spanning
the same vector space, we apply Proposition ?? and get that h2/1(M) = h2/1(N). So,

∏
v nv = nh(LT ), as

desired. �

Corollary 2.2 (First Inequality). Let L/K be a cyclic extension of degree n. Then, Ĥ0(G,CL) ≥ n.

Proof. This falls directly from Theorem ??. �

3. Split Primes

Proposition 3.1. If L/K is abelian and nontrivial, then there are infinitely many non-split primes.

Proof. Suppose for contradiction that there are only finitely many non-split primes. Consider the following
commutative diagram with exact rows and columns, resulting from the definition of CK :

1 L× A×L CL 1

1 K× A×K CK 1

1 K×/NL/K(L×) A×K/NL/K(A×L ) CK/NL/K(CL) 1

N N N
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First, we want to calculate A×K/NL/K(A×L ). To do this, it suffices to examine the norm map. Suppose that
p is a totally split prime. Then, we can see that NL/K : (L ⊗ K×p ) → K×p is surjective. This is because
L⊗K×p =

∏
nK

×
p , implying that for p totally split

NL/K :
∏
n

K×p → K×p

(a1, ..., an) 7→
∏
n

ai

This map is clearly surjective. But what happens at the non-split primes? Then, for some non-split prime
p, we have p = p1 · · · pr for some r|n and [Lpi

: Kp] = n/r where Lpi
= Lpj

for 1 ≤ i, j ≤ r. Then, we have:

NL/K :
∏
r

L×p → K×p

(a1, ..., ar) 7→
∏
r

N(ai)

So, the image of NL/K is NLp/Kp
(L×p ). Together with our assumption that there are finitely many nonsplit

primes, this implies that
A×K/NL/K(A×L ) =

∏
p non-split

K×p /NLp/Kp
(L×p )

Now, we apply weak approximation to see thatK× is dense in
∏

p non-splitK
×
p because there are finitely many

non-split primes. Theorem ?? gives us that NLp/Kp
(L×p ) is an open subgroup. Therefore, Corollary ?? tells

us that K×/NL/K(L×) → A×K/NL/K(A×L ) is surjective implying that CK/NL/K(CL) is trivial. However,
Corollary ?? gives us a nontrivial lower bound on Ĥ0(G,CL), so we have a contradiction. �

4. Dirichlet’s Theorem on Arithmetic Progressions

Theorem 4.1. If (a,m) = 1, then there exists infinitely many primes of the form a+mk, where k ∈ N.

The most common proof of this theorem uses L-functions. However, we want to apply the first inequality
to find some interesting facts.

Proposition 4.2. There are infinitely primes p such that p 6≡ 1 mod m.

Proof. Consider K = Q(ζm). Then G = Gal(K/Q) = (Z/mZ)×. Now, consider p - m. Then, from class
field theory, we have that Frobp ∈ Gal(K/Q) maps to p ∈ (Z/mZ)×. Furthermore, we know that the
decomposition group Dp = {σ ∈ G : σ(p) = p} = 〈Frobp〉. Now, note that if p splits completely, then
Dp = {e}, which is equivalent to saying Frobp = 1 and p ≡ 1 mod m. However, if you look at nonsplit
primes, we previously showed that there are infinitely many nonsplit primes in Proposition 2.1. This implies
that there must be infinitely many primes such that p 6≡ 1 mod m. �

This seems to be the limit of the first inequality without invoking stronger theorems. For example, we
could use the Chebotarev Density Theorem to see that since G is abelian, the set of primes p ≡ a mod m
has density 1/n in the set of all primes.

5. Hilbert Class Field

A consequence of class field theory is that for any given number field K, the class group ClK is isomorphic
to the Galois group of M/K where M is the maximal extension of K that is abelian and unramified at all
places of K. One immediate observation is that the class number |ClK | is equal to the degree of the extension
M/K. To explore how this consequence arises from class field theory, we will show that the first inequality
implies that [M : K] divides |ClK |.

We begin by first showing that if L/K is an abelian extension of prime degree p such that every prime of
K is unramified in L, then p must divide |ClK |.

Proposition 5.1. Let K be a number field and ClK its class group. If p ∈ Z is a prime such that p does
not divide |ClK |, then there does not exist an finite abelian field extension L/K such that all primes of K
are unramified in L and p = [L : K].
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Proof. With the assumptions of the proposition, suppose for contradiction that there exists an abelian field
extension L/K of degree p such that all primes of K are unramified in L. Let G denote the group Gal(L/K).

Let CL and CK be the idele class group of L and K, respectively. Then, we get the following commutative
diagram with exact rows:

1 O×L�
(

(R⊗ L)× × Ô×L
)

CL ClL 1

1 O×K�
(

(R⊗K)× × Ô×K
)

CK ClK 1

N N N

where N on the quotient is the map taken at each place while N on CL and ClL are the induced map (which
facilitates commutativity). As a result, we get the following short exact sequence:

1
O×K�(R× ⊗K×)× Ô×K)

N(O×L�(R× ⊗ L×)× Ô×L ))
CK/N(CL) ClK/N(ClL) 1

Recall that for any G-module ML, Ĥ0(G,ML) is defined to be MG
L /N(ML). Thus, we can rewrite the above

sequence as follows:

1 Ĥ0(G,O×L�(R⊗ L)× × Ô×L ) Ĥ0(G,CL) Ĥ0(G,ClL) 1

By Theorem ??, we know that p = [L : K] divides |Ĥ0(G,CL)|. However, by assumption, p does not divide
|ClK |, and since Ĥ0(G,ClL) is a quotient of ClK , p does not divide |Ĥ0(G,ClL)|. Thus, it is sufficient to
show that p does not divide |Ĥ0(G,O×L�(R⊗ L)× × Ô×L )| to arrive at a contradiction.

We take for granted from local class field theory that the norm map maps the component Ô×Lv
onto Ô×Kv

where Lv/Kv is unramified. For the infinite places, observe that the tensor-product R⊗K (respectively R⊗L)
decomposes into the product CcK×RrK (resp CcL×RrL) where cK (resp cL) and rK (resp rL) are the number
of complex embeddings and real embeddings of K (resp L), respectively. Since L is unramified everywhere,
and therefore unramified at the infinite places, all real places of K cannot ramify as a complex place in L.
Thus, each infinite place always splits which implies that the norm map is surjective at each complex place.
As for the real places, the norm is clearly surjective. In conclusion, Ĥ0(G,O×L�(R ⊗ L)× × Ô×L ) is trivial
and, in particular, its order is not divisible by p. �

The proof above actually provides a stronger statement than Proposition ??. Since Theorem ?? states
that h2/1(CL) is precisely [L : K], we can immediately extend the process to cyclic extensions of prime
power. Precisely, we get the following corollary.

Corollary 5.2. Let K be a number field and ClK its class group. If p ∈ Z is a prime such that pn does not
divide |ClK | for some n ∈ N, then there does not exist a cyclic field extension L/K such that all primes of
K are unramified in L and pn = [L : K].

Naturally, as we have broken down the cyclic extensions of prime power orders, we seek to extend this
result to all abelian extensions of prime power orders. Specifically, we must extend our results to Galois
extensions with Galois groups of the form Z/pnZ× Z/pmZ.

Proposition 5.3. Let K be a number field and ClK its class group. If p ∈ Z is a prime such that pn does
not divide |ClK |, then there does not exist a finite abelian field extension L/K such that all primes of K are
unramified in L and pn = [L : K].

Proof. Suppose L/K is an abelian extension of degree pn that is everywhere unramified. Prop ?? states
that L/K cannot be a cyclic extension, so Gal(L/K) must be isomorphic to Z/pn1Z × · · · × Z/pnrZ. Let
E1, . . . , Er be the subextensions such that Gal(Ei/K) = Z/pZ and Gal(E1 . . . Er/K) = (Z/pZ)r. Denote by
E, the compositum of the subextensions E1, E2, . . . , Er.

Recall that the proof of surjection of the norm map O×L�(R⊗L)× × Ô×L → O
×
K�(R⊗L)× × Ô×K within

the proof of Proposition ?? relies solely on L/K being an everywhere unramified extension, so the surjection
still holds. Thus, it is sufficient to show that the order of the quotient CK/N(CL) is divisible by pn.
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Since each Ei is a cyclic extension by construction, the first inequality tells us that CK/N(CEi) has order
p. Furthermore, each Ei is everywhere unramified since each Ei is a subextension of L. Note that since
E, the compositum of all Ei, has Galois group (Z/pZ)r, the quotient CK/NE/K(CE) must have at least r
factors of p-groups.

For each 1 ≤ i ≤ r, define Fi as a subextension of L/K such that Gal(Fi/K) = Z/pniZ and Ei is a
subextension of Fi/K. By the proof of Proposition ?? and the proof of the first inequality, we know that
CK/NFi/K(CFi) has a cyclic component of degree pni .

Finally, recall that norms compose nicely, i.e. NEi/K◦NFi/Ei
= NFi/K . Thus, NFi/K(CFi

) ⊂ NEi/K(CEi
).

In fact, each Fi gives rise to a factor of Z/pniZ in CK/NL/K(CL). Since the norm of each Fi pass through
NE/K(CE), it follows that CK/NL/K(CL) contains a subgroup isomorphic to Z/pn1Z × · · · × Z/pnrZ. It
follows that pn divides |ClK/NL/K(ClL)|, so pn divides |ClK | which is a contradiction. �

In effect, Proposition ?? tells us that the maximal abelian everywhere unramified extension of a global
field cannot have degree greater than the order of the class group. It remains to show that for any number
field K, there exists an everywhere unramified abelian extension of K of degree |ClK |. However, once this
“global” property (which is proven by the full force of class field thoery) is proven, one can conclude that
the maximal everywhere unramified abelian extension of a number field K has Galois group isomorphic to
its class group ClK .
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